A Link Density Clustering Algorithm based on Automatically Selecting Density Peaks For Overlapping Community Detection
نویسندگان
چکیده
In this paper, we proposed a link density clustering method for overlapping community detection based on density peaks. We firstly use an extended cosine link distance metric to reflect the relationship of links. Then we introduce a clustering algorithm with fast search for solving the link clustering problem by density peaks with box plot strategy to determine the cluster centres automatically. Finally, we acquire both the link communities and the node communities. Our algorithm is compared with other representative algorithms through substantial experiments on real-world networks. The experimental results show that our algorithm consistently outperforms other algorithms in terms of modularity and coverage.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملImprovement of density-based clustering algorithm using modifying the density definitions and input parameter
Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...
متن کاملDFC: Density Fragment Clustering without Peaks
The density peaks clustering (DPC) algorithm is a novel density-based clustering approach. Outliers can be spotted and excluded automatically, and clusters can be found regardless of the shape and of dimensionality of the space in which they are embedded. However, it still has problems when processing a complex data set with irregular shapes and varying densities to get a good clustering result...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کامل